Characterization of the glutamate transporter in retinal cones of the tiger salamander.
نویسندگان
چکیده
L-Glutamate elicits an inwardly rectifying current at hyperpolarized potentials in isolated retinal cones of the tiger salamander, as measured under whole-cell patch clamp. Evidence presented in this article supports the notion that cones possess a high-affinity glutamate transporter. This glutamate-elicited current shows no desensitization over a period of several minutes, and has an affinity (Km) of 10 microM. The inward current is mimicked by the amino acids L-aspartate, D-aspartate, L-cysteate, and to a lesser extent D-glutamate. It is neither blocked by the glutamate receptor antagonists kynurenic acid (1 mM), 6-cyano-7-nitroquinoxaline-2,3-dione (100 microM), or 2-amino-5-phosphonovalerate (100 microM), nor elicited by the glutamate receptor agonists (100 microM each) kainate, quisqualate, NMDA, or 2-amino-4-phosphonobutyrate. The glutamate-elicited current was reduced by the glutamate transport blockers dihydrokainate (DHKA), DL-threo-beta-hydroxyaspartate (beta HA), and L-trans-pyrrolidine-2,4-dicarboxylic acid. When glutamate was present on both sides of the membrane, the blockers reduced both uptake and release; the blocker-sensitive current as a function of membrane potential represents the transport current-voltage relation (I-V), and the reversal potential of the I-V represents the transporter equilibrium potential. This potential was a function of the equilibrium potential for glutamate. DHKA and beta HA depolarized horizontal cells in a retinal slice, and abolished their light responses, suggesting that in the absence of glutamate transport, glutamate concentrations in the cleft rise to a level that saturates the postsynaptic receptors. The high capacity of the cone glutamate transporter is well suited for the rapid removal of glutamate from the synaptic cleft required for the signaling of a light onset to postsynaptic cells.
منابع مشابه
Characterization of Glutamate Transporter Function in the Tiger Salamander Retina
Glutamate transporters in the tiger salamander retina were studied by autoradiographic and intracellular recording techniques. When the retina was incubated with 15 microM L-[3H]glutamate, photoreceptors and Muller cells were labeled, indicating that these cells had high-affinity glutamate uptake transporters. A much higher dose of glutamate than kainate was required in the bath to produce the ...
متن کاملImmunocytochemical analysis of photoreceptors in the tiger salamander retina
In the tiger salamander retina, visual signals are transmitted to the inner retina via six morphologically distinct types of photoreceptors: large/small rods, large/small single cones, and double cones composed of principal and accessory members. The objective of this study was to determine the morphology of these photoreceptors and their synaptic interconnection with bipolar cells and horizont...
متن کاملLocalization and function of five glutamate transporters cloned from the salamander retina
Glutamate is the major excitatory neurotransmitter in the vertebrate retina. Native glutamate transporters have been well characterized in several retinal neurons, particularly from the salamander retina. We have cloned five distinct glutamate transporters from the salamander retina and examined their localization and functional properties: sEAAT1, sEEAAT2A, sEAAT2B, sEAAT5A and sEAAT5B. sEAAT1...
متن کاملCannabinoid receptor activation differentially modulates ion channels in photoreceptors of the tiger salamander.
Cannabinoid CB1 receptors have been detected in retinas of numerous species, with prominent labeling in photoreceptor terminals of the chick and monkey. CB1 labeling is well-conserved across species, suggesting that CB1 receptors might also be present in photoreceptors of the tiger salamander. Synaptic transmission in vertebrate photoreceptors is mediated by L-type calcium currents-currents tha...
متن کاملSynaptic inputs mediating bipolar cell responses in the tiger salamander retina
Postsynaptic receptors in bipolar cells were studied by focal application of glutamate and GABA to the outer and inner plexiform layers (OPL and IPL) under visual guidance in living retinal slices of the tiger salamander. Two different types of conductance change could be elicited in bipolar cells by applying glutamate to the OPL. In off-center cells, which had axon telodendria ramifying in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 13 1 شماره
صفحات -
تاریخ انتشار 1993